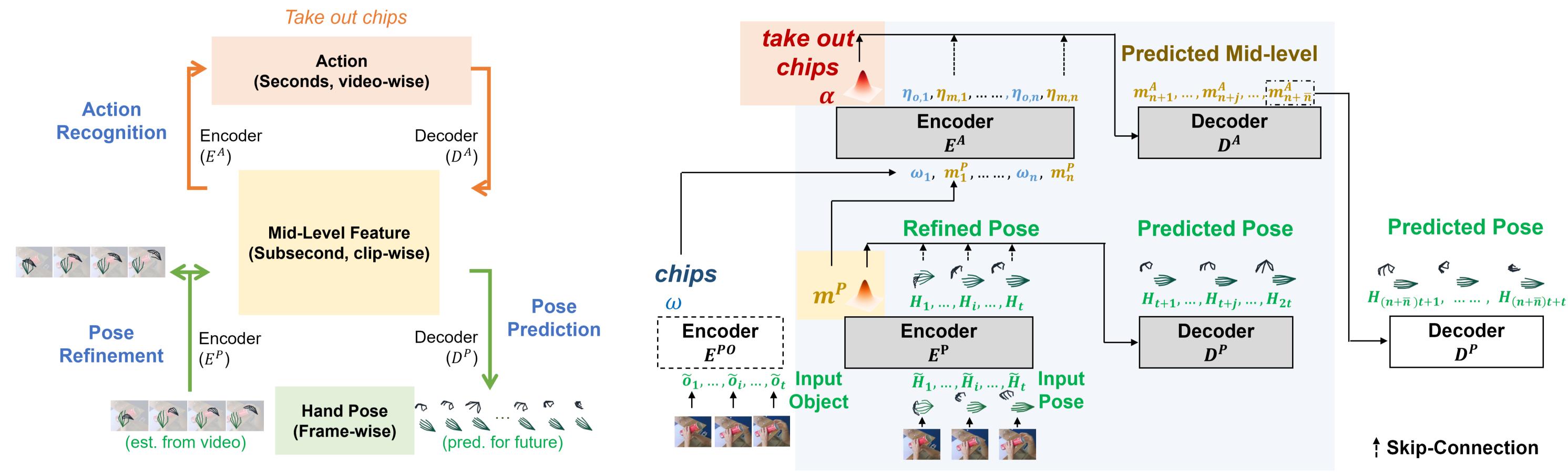


Generative Hierarchical Temporal Transformer for Hand Pose and Action Modeling

Yilin Wen^{1,2}, Hao Pan³, Takehiko Ohkawa², Lei Yang^{1,4}, Jia Pan^{1,4}, Yoichi Sato², Taku Komura¹, Wenping Wang⁵

¹The University of Hong Kong, ²The University of Tokyo, ³Microsoft Research Asia, ⁴Centre for Garment Production Limited, Hong Kong, ⁵Texas A&M University

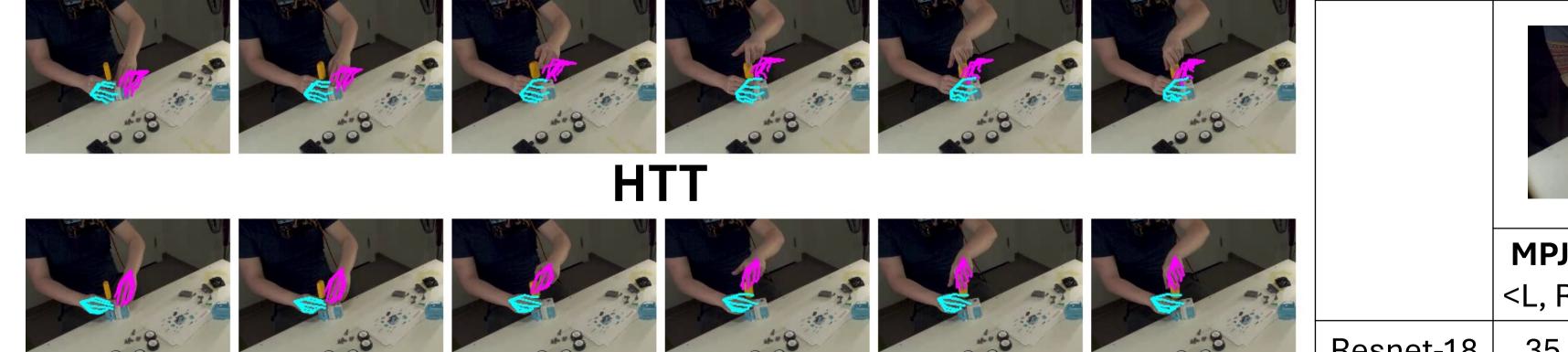


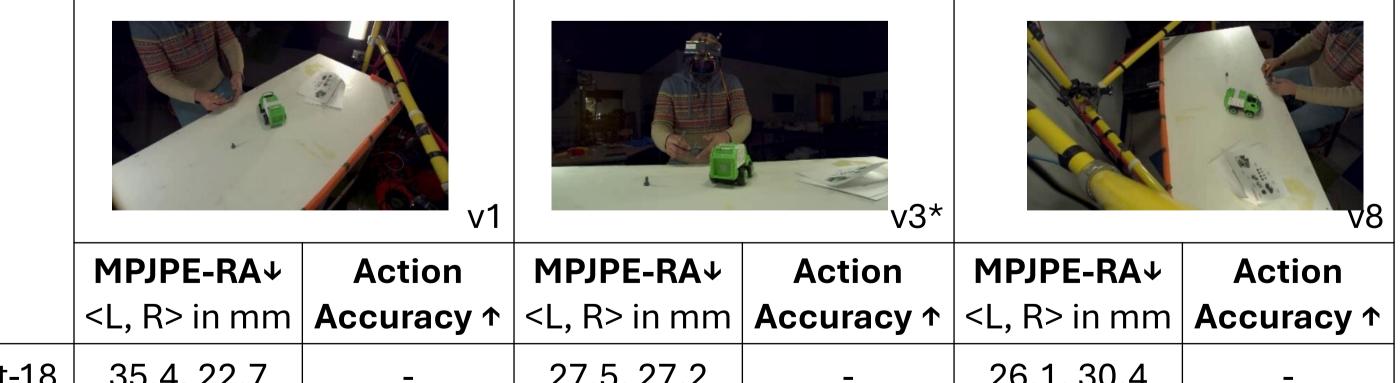
Project Page

Summary: A Unified Framework

- Concurrently tackles recognition and generation.
 - ✓ Exploits the synergy of both sides, thus improving over separate models.
- > Models semantic dependency and temporal granularity between pose and action.
 - ✓ Captures both short-term and long-term temporal regularities via hierarchical temporal transformer blocks.
 - ✓ Trains the two blocks separately to fully utilize datasets with annotations of different temporal granularities.

G-HTT: Hierarchical Transformer VAE


> Generative Transformer VAE architecture to jointly model recognition and prediction.


- Encoder and decoder respectively capture recognition and prediction.
- VAE bottleneck mandates the learning of consistent hand motion from the past to the future and vice versa.
- > Block cascades to capture the semantic dependency and temporal granularity of hand pose-action.
 - Lower block and upper block respectively model hand poses over short time spans and action over long time spans.
 - Two blocks are bridged by a **middle-level representation**.

Results: G-HTT Improves over Separate Models

Hand Pose Estimation and Action Recognition

- Baselines:
 - Resnet-18 for image-based hand pose estimation, which provides frame-wise inputs for G-HTT and HTT.
 - HTT [Wen+, CVPR'23] for hand pose estimation and action recognition. Note that HTT is trained on the pre-trained Resnet-18, where camera view v3 is leveraged in training; our G-HTT is never trained on the pre-trained Resnet-18.
- Through evaluation on different camera viewpoints, our G-HTT shows enhanced generalization by learning regular motion priors across tasks; HTT is more likely to overfit particular data distributions.

Ours

On camera view v1 of AssemblyHands [Ohkawa+, CVPR'23].

Hand Motion Prediction

	Ours	35.1, 22.4	36.01	27.3, 26.9	34.79	25.9, 30.0	36.74
	HTT	55.6, 39.0	16.55	26.7, 27.3	39.42	91.3, 88.5	9.98
-	nesilet-lo	35.4 , ZZ .7	-	27.5, 27.2	-	20.1, 30.4	-

> Ours shows better generation quality across actions than a prediction-only network (i.e., PoseGPT [Lucas+, ECCV'22])

Input Observation			Output Prediction							
Obsv.					Pred.		_			
Frame	1	6	11	16	Frame	1	16	32	48	64 @30fps
						A A A A A A A A A A A A A A A A A A A				A REAL PROPERTY OF THE PROPERT
					DocoCDT		Aid Loval		$\sim (m/D)$	Oure (w/ D

PoseGPT w/o Mid-Level Ours (w/ P) Ours (w/ P, A)

On a case of *taking out chips* from the H2O dataset. Ours shows globally consistent action.

	Н	2O-test	AssemblyHands-val		
	FID ↓	$\mathbf{D} \downarrow \begin{vmatrix} \mathbf{APD} \uparrow \\ in mm \end{vmatrix} \mathbf{FID} \downarrow \begin{vmatrix} \mathbf{A} \\ $		APD ↑ <l, r=""> in mm</l,>	
PoseGPT	11.70	24.1, 48.6	16.07	25.3, 33.0	
Ours (with <i>P</i> , <i>A</i>)	8.19	20.1, 33.9	5.04	28.1 , 32.8	

On action sequences that are longer than 1 sec.