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Task Framework Disentangled shape and pose learning with the auto-encoding framework
Scalable 6D pose estimation for rigid objects from Encoding  Block > The encoder E maps the input image to its implicit shape and pose code z,, z,. Image I,y is
RGB images: Aiming at handling multiple objects and || * ~ ° LI oy Z;;';;‘MO augmented 1s augmented into [, ;, for the input in training.
generalizing to novel objects with a single framework. Wl » The decoder D"9” (or plus D%¢Pt") tries to recover the canonical image I, (or plus the
o8 f & canonical depth map M,, ,,) from z,, z,,, by conditioning the per-view reconstruction on the shape
o prob '. : )
Key DGSIgnS | E brecon 3, code z, with the AdaIN modulation.
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*Symmetries marked by code color

We extend the auto-encoding framework for RGB-based
rotation estimation, by:

» Disentangling the object shape and pose code to
improve scalability. A regular shape space 1s learned
with contrastive learning, and the pose code 1s compared
with canonical rotations for pose estimation.

» Re-entangling the shape and canonical rotation to
model the different pose spaces due to different
object symmetries. Object-conditioned pose codebooks
are generated for rotation retrieval.

e I,, *Optional DP" for settings with
testing objects having no specific sizes

Contrastive Metric Learning for Object Shapes

» A metric space for the shape codes is built with contrastive metric learning, where we establish a shape embedding C° with each ¢; € C°

» Training Objective: Lygeon = Zo,p(

representing a training object, and model the proximity between z, and C°.

» Training Objective: Lgpgpe = — 2o p Z?’z"l w;’ log Pr(c;|z,), with w° as a one-hot vector for the target distribution.

Re-entanglement of Shape and Pose

» The conditioned block B entangles the rotational position encoding h,, and the shape code z, with a tensor product structure, and outputs a

pose code z, ,, that 1s comparable with the z,, generated by E'.

» Training Objective: Lyose = — Yo p Zop * Zp, With Z denoting the normalized unit-length vector for z.
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Ablation and Visualization

» Shape Conditioned Pose Code Generation
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Top three PCA projections of pose codes. Point colors (blue—green—red) encode
rotations as viewpoints change from north pole to south pole.

» Contrastive Metric Learning of Latent Shape Space

w/o Shape Loss w/ Shape Loss = w/o Shape Loss w/ Shape Loss
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Inference Settings 1&I111

Novel objects in a given category (Setting 1)
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t-SNE embedding of z,. Our network i1s unaware of category labels.
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Inference Setting 11

Novel objects with 3D models. Objects have
drastic geometric differences and no specific
category consistency.
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Results on T-LESS (Train on Obj. 1-18 only)

w/ 2D GT | Obj. 1-18 | Obj. 19-30 | Obj. 1-30 || w/ MaskRCNN | Obj. 1-30
MP-AAE 60.75 59.89 60.41 MP-AAE 23.51
Nguyenetal. | 59.62 57.75 58.87 Pitter1 et al. 23.27
Ours 66.14 64.42 65.45 Ours 35.36

Average recall rates with eysp < 0.3

Ours on trained objects/unseen objects; GT




	幻灯片编号 1

