DISP6D: Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose Estimation

¹The University of Hong Kong

Yilin Wen^{1,†}, Xiangyu Li^{2,†}, Hao Pan³, Lei Yang^{1,4}, Zhe

²Brown University

³Microsoft Research

Framework **Disentangled shape and pose learning with the auto-encoding framework** \triangleright The encoder E maps the input image to its implicit shape and pose code z_0, z_p . Image $I_{0,p}$ is augmented is augmented into $\overline{I}_{o,p}$ for the input in training. > The decoder D^{rgb} (or plus D^{depth}) tries to recover the canonical image $I_{o,p}$ (or plus the canonical depth map $M_{o,p}$) from z_o, z_p , by conditioning the per-view reconstruction on the shape code z_o with the AdaIN modulation. *Optional D^{depth} for settings with sting objects having no specific sizes \succ Training Objective: $L_{recon} = \sum_{o,p} \left(\left\| I_{o,p} - D^{rgb} \left(E(\bar{I}_{o,p}) \right) \right\|^2 + C^{rgb} \left(E(\bar{I}_{o,p}) \right) \right)$ **Contrastive Metric Learning for Object Shapes** \triangleright A metric space for the shape codes is built with contrastive metric learning, where we establish a shape embedding C^o with each $c_i \in C^o$ representing a training object, and model the proximity between z_o and C^o . > Training Objective: $L_{shape} = -\sum_{o,p} \sum_{i=1}^{N_o} w_i^o \log \Pr(c_i | z_o)$, with w^o as a one-hot vector for the target distribution. **Re-entanglement of Shape and Pose** \succ The conditioned block B entangles the rotational position encoding h_p and the shape code z_o with a tensor product structure, and outputs a pose code $z_{o,p}$ that is comparable with the z_p generated by E. > Training Objective: $L_{pose} = -\sum_{o,p} \hat{z}_{o,p} \cdot \hat{z}_p$, with \hat{z} denoting the normalized unit-length vector for z.

eng V	Vang ⁵ , Taku	Komura ¹ ,	Wenping
n Asia	⁴ TransGP	⁵ SUSTech	⁶ Texas A

Wang⁶ A&M University

$$+ \left\| M_{o,p} - D^{depth} \left(E(\bar{I}_{o,p}) \right) \right\|^2 \right)$$

66.14	64.42	65.45	Ours	35.36
59.62	57.75	58.87	Pitteri et al.	23.27
60.75	59.89	60.41	MP-AAE	23.51
<i>Obj. 1-18</i>	<i>Obj.</i> 19-30	<i>Obj. 1-30</i>	w/ MaskRCNN	<i>Obj. 1-30</i>