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Abstract. Understanding dynamic hand motions and actions from ego-
centric RGB videos is a fundamental yet challenging task due to self-
occlusion and ambiguity. To address occlusion and ambiguity, we develop
a transformer-based framework to exploit temporal information for ro-
bust estimation. Noticing the different temporal granularity of and the
semantic correlation between hand pose estimation and action recogni-
tion, we build a network hierarchy with two cascaded transformer en-
coders, where the first one exploits the short-term temporal cue for hand
pose estimation, and the latter aggregates per-frame pose and object
information over a longer time span to recognize the action. Our ap-
proach achieves competitive results on the H2O and FPHA benchmark.
Extensive ablation studies verify our design choices.
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1 Introduction

Perceiving dynamic interacting human hands from the egocentric RGB video is
fundamental yet challenging, as there are frequent self-occlusions between hands
and objects, as well as severe ambiguity of action types judged from individual
frames (e.g. see Fig. 1 where the actions of pour milk and place milk can only
be discerned at complete sequences).

Unified frameworks [11,12,16] have been proposed to simultaneously address
both 3D hand pose estimation and action recognition, based on the critical ob-
servation that the temporal context of hand poses helps resolve action ambiguity,
using models like LSTM, GCN or TCN. However, we note that temporal informa-
tion can also benefit hand pose estimation: while hands are usually under partial
occlusion and truncation especially in the egocentric view, they can be inferred
more reliably from neighboring frames with different views by temporal motion
continuity. Indeed, this idea has not been fully utilized yet by [11,12,16]: [11,12]
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Fig. 1: Image sequences from H2O [11], with frequent occluded hand joints and
ambiguous action type judged by individual frames.

Fig. 2: Overview of our framework (Left) and the segmentation strategy for di-
viding a long video into inputs of HTT (Right).

perform image-based hand pose estimation, leaving the temporal dimension un-
explored, and [16] jointly refines action and hand pose through hand-crafted
multiple-order motion features and a complex iterative scheme.

We build a framework to exploit the temporal dimension for effective hand
pose estimation and action recognition with a single feed-forward pass. To exploit
the inter-frame relationship, we adopt the transformer architecture [13] which has
demonstrated superior performance in sequence modeling. However, action and
pose have different temporal granularity: while the action is related to longer time
spans lasting for several seconds, the hand pose depicts instantaneous motions.
Moreover, we notice that the action is usually defined in the form of “verb +
noun” [7, 11], where verb can be derived from the hand motion and the noun
is the object being manipulated. Therefore, we build a hierarchical temporal
transformer with two cascaded blocks, to leverage different time spans for pose
and action estimation, and model their semantic correlation by deriving the
high-level action from the low-level hand motion and manipulated object label.
Evaluation on H2O [11] and FPHA [7] verifies our competitive performances.

2 Methodology
Network design. Our network is visualized in Fig. 2, where given the egocentric
RGB video S with T frames, we first feed each image to a ResNet-18 [9] feature
extractor, and then pass the sequence of image features to our core network
HTT, which is a hierarchical temporal transformer that outputs the per-frame
3D hand pose and action category for S respectively from two cascaded parts
P and A. To implement the different time spans efficiently, videos are split into
sub-sequences with a shifting window strategy.

The pose block P focuses on a narrower temporal receptive field with only t
(t < T ) consecutive frames, to improve the robustness under frequent invisible
joints while also prevent confusion of local motion caused by overemphasis on
temporally distant frames. Therefore, S is divided into consecutive segments
segt(S) by a shifting window strategy with window size t (see Fig. 2, left),
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where tokens beyond the length T are padded but masked out from self-attention
computation. P then processes each segment S̄ ∈ segt(S) in parallel to capture
the temporal cue for hand pose estimation, whose output per-frame token gS̄(I)
encodes for I ∈ S̄ also the temporal cue from S̄. We decode from gS̄(I) the hand
pose for I including the joint coordinates in the image plane P 2D

I and the joint

depth to the camera P dep
I . To supply the noun of an action [12], we also regress

from gS̄(I) the probability distribution OI for the object.
The action block A leverages the full S to predict the action label, where

we follow [2,3] to introduce an extra trainable token αin to aggregate the global
information across S. The other T input tokens encode the per-frame informa-
tion h(I) of hand pose and object label, and also the image feature gS̄(I) which
may encode other useful cues like object appearance and hand-object contacts;
we observe the best performance with such input data than alternative com-
binations. We classify the action for S from the first token αout of the output
sequence by A.
Implementation details. We set T = 128 and t = 16 as the respective maxi-
mum input sequence length for A and P, where T is derived from the limitation
of available computational resources. To process a longer video, we split V into a
clip set segT(V ) such that each clip S ∈ segT(V ) can be processed by HTT: V is
first downsampled with a sampling ratio of 2 and further divided into consecutive
clips by adopting the shifting window strategy with a window size T .

In training, while the ResNet-18 has its weight initialized from that trained
on ImageNet, we do not pre-train our HTT on other datasets. We supervise the
hand pose estimation by minimizing the L1-loss compared to the groundtruth,
and the object and action classification with the standard cross-entropy loss.
To augment sampling variations of training data, we offset the starting frame
to each of the first t frames (Fig. 2, right), which ensure that both P and A
consume different augmented data generated from the same sequence.
Testing stage computation. For a video V , we obtain the per-image 3D hand
pose from P and the action category for V by voting from the output category
among S ∈ segT(V ) (Fig. 2, right), therefore achieving efficient computation as
each image is processed only once by both P and A.

3 Experiments

Result on H2O [11]. We report comparison with related works in the left part
of Tab. 1, where we show competitive performance in both tasks. For hand pose
estimation, our better performance compared with image-based methods [8, 11,
12] shows the benefits of using the temporal coherence for improved robustness.
Result on FPHA [7]. We report results in Fig. 5, where we outperform base-
line methods for action recognition, and show competitive results for hand pose
estimation against the video-based [4, 16] and image-based [12] methods.
Ablation Study. We verify the benefits of using short-term temporal cue for
pose estimation in the upper-right of Tab. 1 and Fig. 3. Our t = 16 achieves
the best performance, which shows enhanced robustness under invisible joints
compared with t = 1, while avoids over-attending to distant frames and ensures
sharp local motion compared with a long-term t = 128.
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Table 1: Results of hand (upper) and action (lower) on the test split of H2O [11],
for comparison with related works (left) and ablation study (right).
MEPE(in mm) H+O [12] LPC [8] H2O [11] Ours

L/R 41.42/38.86 39.56/41.87 41.45/37.21 35.02/35.63
MEPE(in mm) t = 1, T = 128 t = 16, T = 128 t = 128, T = 128

L/R 40.12/40.62 35.02/35.63 36.41/39.36

C2D I3D SlowFast H+O H2O [15] H2O [11] Ours
[14] [1] [5] [12] w/ ST-GCN w/ TA-GCN

Acc. 70.66 75.21 77.69 68.88 73.86 79.25 86.36

t = 16, T = 16 t = 16, T = 128 t = 16, T = 128
Cascaded P,A Cascaded P,A Parallel P,A

Acc. 74.38 86.36 80.17

Fig. 3: Qualitative comparison of different t on H2O [11]. For t = 16, 128, the
attention weights in the final layer of P is visualized.

Fig. 4: Visualization for weights of attention in the final layer of A, from the
action token to the frames.

RGB-based methods Acc.

Joule-color [10] 66.78
Two-stream [6] 75.30

H+O [12] 82.43
Collaborative [16] 85.22

Ours 94.09

Fig. 5: Results of hand (left) and action (right) on FPHA [7].

For action recognition, we verify the benefits of using a long time span and the
cascaded design of P and A in the lower-right of Tab. 1, where the counterpart
of parallel P and A are set by letting both P and A take the ResNet feature as
the per-frame input token. For our design choice, we also visualize in Fig. 4 the
attention weights of A, regarding a video of take out espresso whose action can
only be judged by the last few frames depicting the process of taking the capsule
out of the box, where correspondingly these key frames receive most attentions.

4 Conclusion

We have proposed a unified framework for 3D hand pose estimation and action
recognition from an egocentric RGB video, to cope with the challenge of self-
occlusions and action ambiguity. Our core network is a hierarchical temporal
transformer consisting of two cascaded parts, for modeling the semantic corre-
lation between the two tasks and leveraging different time spans according to
their temporal granularity. Evaluations verify the effectiveness of our method.
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